7 - 3 Special Right Triangles

45° - 45° - 90° Triangles

What does this triangle look like?

Theorem 7.6:

In a 45° - 45° - 90° triangle, the length of the hypotenuse is $\sqrt{2}$ times the length of a leg.

Ex: All of the triangles in the following picture are 45° - 45° - 90° triangles with legs of 3 in. Find the length of the diagonal of the entire square.

Ex: Solve for x.

$$x \text{ in } x \text{ in } 45^{\circ}$$

$$6 \text{ in } 6 \text{ in } 72 = 6\sqrt{2}$$

$$\sqrt{2} = 3\sqrt{2}$$

30° - 60° - 90° Triangles

What does this triangle look like?

Theorem 7.6:

In a 30° - 60° - 90° triangle, the length of the hypotenuse is 2 times the length of the shorter leg, and the length of the longer leg is $\sqrt{3}$ times the length of the shorter leg.

Ex: Solve for x and y.

Ex: Solve for x and y.

Homework:

7-3 WS